Visualisation of Verb Dependencies

in the EAP Classroom

Yulia Svetashova & Heike da Silva Cardoso

Uni Tübingen

June 21, 2014

How to Use Concur in a Sentence

Attorneys often use the word "concur" in legal documents. It has a long history of and its use has evolved over the years. Since "concur" is rarely used in daily conversations, it is important to understand how to correctly use it in a sentence. According to the dictionary, the most common definition of "concur" is "to accord in opinion" or "agree." The most proper was to see "concur" in a sentence is to reolose the word "acree."

Visualisation of Verb Dependencies

in the British Academic Written English Corpus (BAWE)

- Motivation
- Introduction to Dependency Parsing and Verb Dependencies
- BAWE Corpus
- Visualisation
- Usage in the EAP Classroom
- Further Work

What is a Dependency Grammar?

In a dependency grammar the verb is seen as the governor or head of a sentence.

Bell, based in Los Angeles, makes and distributes electronic, computer and building products[De Marneffe and Manning(2008)]

Verb Dependencies

Every verb needs a certain number and certain types of arguments, for example: to eat 2 arguments of which one is optional

- Paul is eating dinner.
- Paul is eating.

while to devour needs two arguments:

Paul devoured his steak.

and to give needs 3:

Paul gave Mary the book.

Importance of Arguments

Arguments are essential to the understanding of a verb, because

- they show us how it can be used and in which context and
- how the meaning of a verb changes when different arguments are used
- word sense disambiguation

Why are Verb Dependencies Important in the EAP Classroom?

- How a verb is used helps us understand it better
- If we see how verb usage changes from level 1 to level 4 it helps us deduce what students have to learn and what we can expect of a writer
- By comparing verb usage between different disciplines we can see variations

Stanford Parser

The Stanford Parser [De Marneffe and Manning(2008)] is an algorithm, designed at Stanford University, CA

It takes a sentence as input and gives back a sentence which is annotated with Part of Speech tags $^{\rm 1}$

and the dependency structure of a sentence.

¹POS tags denote the grammatical category of a word e.g. eat = verb, Paul = noun, etc.

Dependency Types

There are different types of dependency relations to a verb, like subject, direct object, indirect object etc.

The Stanford parser assigns these dependency relations to all words in the sentence.

Like in the following sentence:

'She gave me a book'

iobj² (gave, me) dobj³ (gave, book) nsubj⁴ (gave, She)

²indirect object

³direct object

⁴nominal subject

Stanford Dependency Types

The Stanford Dependency Parser uses a set of approximately 50 grammatical relations.

- These relations are strictly binary.
- They hold between a governor and a dependent.

We chose a subset dependency types, which denote relations between verbs and their arguments

Corpus

We used the BAWE corpus [Nesi and Gardner(2012)] of EAP and ran the Stanford Parser for Dependencies on it.

This gave us an annotated corpus including POS tags and dependency relations. This annotated corpus was used for queries to be able to filter verbs and their dependents for different disciplines and levels of writing.

BAWE Corpus

disciplinary group		Yr 1	Yr 2	Yr 3	Masters	Total
Arts and	students	101	83	61	23	268
Humanities	assignments	239	228	160	78	705
	texts	259	231	161	83	734
	words	468,353	583,617	427,942	234,206	1,714,118
Life Sciences	students	74	71	42	46	233
	assignments	180	193	113	197	683
	texts	191	208	119	203	721
	words	299,370	408,070	263,668	441,283	1,412,391
Physical Sciences	students	73	60	56	36	225
	assignments	181	149	156	110	596
	texts	186	156	169	129	640
	words	300,989	314,331	426,431	339,605	1,381,356
Social Sciences	students	85	88	75	62	313
	assignments	207	197	162	202	777
	texts	218	202	169	204	802
	words	371,473	475,668	440,674	688,921	1,999,130
Total students		333	302	234	167	1039
Total assignments		807	767	591	6587	2761
Total texts		854	797	618	619	2897 ³
Total words		1,440,185	1,781,686	1,558,715	1,704,015	6,506,995

Processing

Why Visualise

- to visualise patterns we already know exist
- to visualise structures and detect patterns

Visualisation of Verb Dependency Structures

This is a comparative visualisation

- 1 it shows differences in verb usage
- it helps to identify specific patterns

Comparison Types

The user can choose between

- level of study comparison: 1, 2, 3, 4 (UG, PG)
- disciplinary groups comparison: Arts and Humanities, Social Sciences, Life Sciences and Medicine, Physical Sciences

Screenshot of the Initial Page

Lists of Verbs

The user is provided with a list of all verbs in the corpus sorted

- by frequency
- alphabetically

Verb List Sorted by Frequency

Corpus Statistics: Disciplinary Group

Group	Number of Tokens		
Arts and Humanities	288,503		
Life Sciences	238,205		
Social Sciences	337,341		
Physical Sciences	235,215		
Total (tagged as) verbs:	1,099,264		
Total number of words:	6,506,995		

- $\mu = 274,816$
- $\approx 17\%$

Corpus Statistics: Level of Study

Level of Study	Number of Tokens		
1	252,560		
2	308,791		
3	266,834		
4	267,364		
unknown	3,715		
Total (tagged as) verbs:	1,099,264		
Total number of words:	6,506,995		

- \bullet $\mu = 273,887.25$
- ≈ 17%

Information Encoded in the Dependency Tree

- Verb lemma, its frequency, POS tags, and forms
 - (agree, level 1) frequency: 256;
 - POS tags: VB, VBN, VBP, VBG, VBD, VBZ;
 - tokens: Agreed, agree, agreed, agreeing, agrees
- Dependency relation types, their frequencies
 - (agree, level 1) type: nominal subject; frequency: 198;
 - type: clausal complement; frequency: 95, etc.
- Dependents' tokens, POS tags, lemmas, their frequencies
- Contexts of usage

Verb Dependencies Tree

Verb Dependents: Collapsible Tree and KWIC

Verb Dependencies Tree

Contexts For example, they object that if the person is not identical to the human animal, then who is sitting in a chair typing these words, the animal or the person? Tim Crane objected to Putnam 's Twin Earth theory. It may be objected by proponents of the wager argument that the existence of a made up God is far less probable than the God of Christian theology, but as long as the rewards of worshipping this made up God are infinite, then the value of its outcome is infinite, the same value which worshipping

the Christian God carries: If we were to

prev next

Prepositional Modifiers: Tree and KWIC

Design Decisions

Contexts

It was a mature female approximating a height of 1m tall, similar to that of AL-288-1 the robust australopithecine `Lucy'.

These latter variables are difficult to calculate although the risk free rate can be approximated using t-bills.

The outdoor enclosure approximated size was 100 m² with a grass and shrub ground substrate and branches and ropes above ground level.

- Visual variable: color
 - selective interpretation task: verbs in the KWIC part are colored red to cause "pop-up" effect

Design Decisions

- Visual variable: color
 - associative

 interpretation task:
 the dependency relation
 types are grouped by
 meaning (e.g., the group
 of object tags circles are
 colored orange, subject
 group, yellow, etc.)

Design Decisions

- Visual variable: size
 - selective visual interpretation task: elements with higher frequencies have a bigger circle radius

Verb Dependencies Tree

- ullet Hovering the node circle o additional information
- Levels of tree hierarchy: verb lemma, relation type, dependent

Additional Information

Interaction Types (Yi et al., 2007)

- Select: the verb is selected from a verb list
- Explore: the dependencies information is returned in a form of a tree
- Reconfigure: nodes are collapsible, the user can focus on the most interesting piece of data
- Abstract (Elaborate): data is shown in the tooltips
- Filter: filtering by frequency and alphabetically is possible

Comparison: Disciplinary Group

Dependencies Comparison

Comparison: Disciplinary Group

Comparison: Level

Dependencies Comparison

Usage

Two example usages would be to identify

- styles of writing
- error patterns

The different types of comparison help identify these features in different fields.

Usage in the EAP Classroom

- by teachers to help understand the level of writing of their students
- to see what can be expected in a specific discipline or a level of writing
- detect frequent errors
- by students to understand possible word usages

Further Work

- choice options
- more flexible data manipulation
- zooming/scaling
- query data export
- multiple verbs comparison
- adding features to be encoded by visual variables
- pipeline tool
- new levels in tree hierarchy (POS)

Summary

We think that

- Visualisation can be very useful to help identify patterns
- Verb dependency structures capture an essential part of the sentence structure
- → Therefore we believe that the visualisation of verb dependency structures is of interest in many fields

References

MST Carpendale.

Considering visual variables as a basis for information visualisation.

Marie-Catherine De Marneffe and Christopher D Manning.

Stanford typed dependencies manual.

Computer Science TR# 2001-693, 16, 2003,

URL http://nlp. stanford. edu/software/dependencies manual. pdf, 2008.

Hilary Nesi and Sheena Gardner.

Genres across the disciplines: Student writing in higher education.

Cambridge University Press, 2012.

Ji Soo Yi, Youn ah Kang, John T Stasko, and Julie A Jacko.

Toward a deeper understanding of the role of interaction in information visualization.

Visualization and Computer Graphics, IEEE Transactions on, 13(6):1224-1231, 2007.